If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8q^2-10q=-3
We move all terms to the left:
8q^2-10q-(-3)=0
We add all the numbers together, and all the variables
8q^2-10q+3=0
a = 8; b = -10; c = +3;
Δ = b2-4ac
Δ = -102-4·8·3
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2}{2*8}=\frac{8}{16} =1/2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2}{2*8}=\frac{12}{16} =3/4 $
| y+1÷3=2 | | 12x-4(4x-1)=0 | | 0.6(d+18)=3d | | 6=c/42 | | 12x-1=2(6=5x)+7 | | 6(x+3)+2=44 | | 2(-3n+4)=-10 | | f(10)=-2(10)+13 | | 9p-34=5p-6 | | 4-x(x-5)=x-19 | | Y^2-26y=56 | | 62-6+7y+5=180 | | 2.50x+15.00=1.00 | | 4(x-2)-3(x+2)=11 | | 7(a-1)=6(a+1 | | g/6+18=26 | | x/(3-7)=29 | | x-(9x-10)+11=2x+3(-2x+1/3) | | 8x+2x-10=150 | | t+24=85 | | 2.5+7.7=4.7x | | 3/2x-0.7+6/2x=0.3 | | X=1.8+-0.4y | | 3x=-2=3 | | -9(b-7)=126 | | -1/2x+11=9 | | -1=-6+r/2 | | 4x+3(2x-4)=48 | | x=27/1 | | k/3-2=7 | | z(z³+1)=5+z⁴ | | 16x+24-21=19x-14+3x-13 |